A New Class of Non-shannon-type Inequalities for Entropies∗
نویسندگان
چکیده
In this paper we prove a countable set of non-Shannon-type linear information inequalities for entropies of discrete random variables, i.e., information inequalities which cannot be reduced to the “basic” inequality I(X : Y |Z) ≥ 0. Our results generalize the inequalities of Z. Zhang and R. Yeung (1998) who found the first examples of non-Shannon-type information inequalities.
منابع مشابه
A Preferred Definition of Conditional Rényi Entropy
The Rényi entropy is a generalization of Shannon entropy to a one-parameter family of entropies. Tsallis entropy too is a generalization of Shannon entropy. The measure for Tsallis entropy is non-logarithmic. After the introduction of Shannon entropy , the conditional Shannon entropy was derived and its properties became known. Also, for Tsallis entropy, the conditional entropy was introduced a...
متن کاملOstrowski type inequalities for functions whose derivatives are preinvex
In this paper, making use of a new identity, we establish new inequalities of Ostrowski type for the class of preinvex functions and gave some midpoint type inequalities.
متن کاملInequalities for Shannon entropies and Kolmogorov complexities
The paper investigates connections between linear inequalities that are valid for Shannon entropies and for Kolmogorov complexities.
متن کاملHermite-Hadamard Type Inequalities for MφA-Convex Functions
This article deals with the different classes of convexity and generalizations. Firstly, we reveal the new generalization of the definition of convexity that can reduce many order of convexity. We have showed features of algebra for this new convex function. Then after we have constituted Hermite-Hadamard type inequalities for this class of functions. Finally the identity has been revealed for ...
متن کاملSimple inequalities for weighted entropies
A number of inequalities for the weighted entropies is proposed, mirroring properties of a standard (Shannon) entropy and related quantities. 2000 MSC. 60A10, 60B05, 60C05
متن کامل